Особенности выбора солнечных батарей - СТРОИТЕЛЬНЫЙ ПОРТАЛ
Ktostroitdom.ru

СТРОИТЕЛЬНЫЙ ПОРТАЛ
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Особенности выбора солнечных батарей

Особенности размещения солнечных панелей

При выборе оптимальной ориентации солнечных панелей следует обратить внимание на практическое использование солнечных установок разных типов. На многочисленных сайтах, которые посвящаются солнечной энергии, данный вопрос не достаточно раскрыт, а незнание может привести к понижению эффективности панелей до самого низкого уровня.

Угол попадания солнечных лучей на поверхность панелей достаточно сильно влияет на коэффициент отражения, следовательно, на долю невоспринятой солнечной энергии. Пример: для стекла при отклонении угла падения от перпендикуляра к его поверхности до 30°, коэффициент отражения почти не изменяется и составляет меньше 5%, то есть больше 95% излучения, которое попадает на поверхность, проходит внутрь. Дальше рост отражение более заметный: к 60° доля отраженного излучения увеличивается практически вдвое – до 10% и т.д.

Эффективная площадь панели является более важным фактором. Эффективная площадь равна реальной площади панели, умноженная на синус угла между плоскостью и направлением потока. Поэтому, если панель перпендикулярна потоку, то ее эффективная площадь такая же, как и реальная. Если поток отклонить на 60°, то площадь составляет половину реальной площади. Если же поток параллельный панели, то эффективная площадь приравнивается нулю. В результате видно, что отклонение потока от перпендикуляра к панели не просто увеличивает отражение, но и может снижать эффективную площадь, обуславливая снижение выработки такой энергии.

Наиболее эффективной является постоянная ориентация панели перпендикулярно к потоку солнечных лучей. Для этого потребуется изменение панели в двух плоскостях, потому что направление Солнца зависит от времени суток и сезона. Конечно, данная система технически возможна, но является достаточно сложной, поэтому дорогая и не очень надежная.

Как известно, при углах падения лучей до 30°, коэффициент отражения на поверхности стекла минимальный и не изменяется, в на протяжении всего года угол максимального подъема солнца над горизонтом отклоняется на 23°. Даже при отклонении угла от перпендикуляра на 23° эффективная площадь панели остается достаточно объемной, не меньше 92% от ее реальной площади. Поэтому следует ориентироваться на среднегодовую высоту максимального подъема Солнца, а также ограничиться вращением в одной плоскости без потери эффективности – вокруг полярной оси Земли, скоростью 1 оборот в сутки. Относительно горизонтали угол наклона вращения панели приравнивается к географической широте месторасположения объекта. Например, Москва находится на широте 56°, следовательно, ось вращения панели должна быть наклонена на север на 56° относительно поверхности. Организовать на практике такое вращение достаточно просто, но для вращения без препятствий необходимо достаточно много места. Также нужно организовать скользящее соединение, которое позволит отводить от вращающей панели всю полученную энергию, или же ограничиться гибкими коммуникациями с фиксированным соединением, но при этом необходимо автоматизировать возврат панели на исходное положение в ночное время. Иначе избежать перекручивания и обрыва отводящих коммуникаций энергию не получится. Такие решения достаточно повышают уровень сложности и снижают надежность и эффективность системы. А при возрастании мощности панели усложняются технические проблемы в геометрической прогрессии.

Исходя из вышесказанного, панели индивидуальных солнечных установок в основном монтируются в неподвижном состоянии, это обеспечит покупателю достаточно низкую цену и высокий уровень надежности такой установки. Но и здесь необходимо правильно выбрать угол наклона и размещения панели. Ниже приведен график восприятия солнечной энергии на примере Москвы.


Восприятие солнечной энергии панелями различной ориентации в Москве

Оранжевая линия показывает результаты отслеживания вращение Солнца вокруг полярной оси.
Синяя линия – неподвижная горизонтальная панель.
Зеленая линия – неподвижная вертикальная панель, направленная на юг.
Красная линия – неподвижная панель, направленная на юг под углом 40° к горизонту.

Проанализируем диаграммы инсоляции для разных углов установки панели. Не секрет, что панель, которая вращается вслед за Солнцем, является самой эффективной (оранжевая линия). Но даже в длинные летние дни эффективность такой панели под оптимальным углом (красная линия) составляет всего 30%. Но в такие дни тепла и света достаточно много. А в период с октября по февраль преимущество поворачивающейся панели над неподвижной панелью минимальное и неощутимое. В такое время дополнением наклонной панели служит вертикальная панель, а не горизонтальная (зеленая линия). Таким образом, низкие лучи солнца зимой скользят по горизонтальной панели, и отлично воспринимаются перпендикулярной им вертикальной. Следует, что эффективность перпендикулярной панели в ноябре, декабре и феврале превосходит производство наклонной панели и практически не отличается от эффективности панели, которая вращается. А в марте и октябре продолжительность дня большая, чем зимой, поэтому вращающаяся панель превосходит все неподвижные панели, но их эффективность практически одинаковая. И только в период с апреля по август, когда дни наиболее длинные, горизонтальная панель считается наиболее эффективной, нежели вертикальная. В июне горизонтальная панель превосходит вертикальную. Такой факт очевиден, поскольку летний день в Москве длится более 17 часов, а в полусфере вертикальной панели Солнце может находиться не больше 12 часов, а остальные 5 часов Солнце находится позади неё. При учете угла падения не более 60°, доля отраженного света от поверхности панели стремительно растет, а эффективность площади уменьшается больше чем в 2 раза. Тогда время эффективного восприятия солнечного излучения панелью не более 8 часов, т.е. 50% от общей продолжительности дня. Так можно объяснить факт стабилизации производительности вертикальных панелей на протяжении всего периода длинных дней, которые начинаются в марте, а заканчиваются в сентябре. Рассмотрим январь, когда производительность панелей практически одинаковая. Январь в Москве всегда пасмурный, больше 90% солнечной энергии является рассеянным. Для такого излучения совсем не имеет значения ориентация панели. Но даже несколько солнечных дней в январе способны снизить производительность горизонтальной панели на 20%.

Какой же угол наклона выбрать?

Угол наклона зависит от того, когда Вам необходима солнечная энергия. Если Вы планируете использовать ее в теплое время года, то предпочтительнее выбирать оптимальный угол наклона — перпендикулярный к среднему положению Солнца в период осеннего и весеннего равноденствия. Такой угол на 10-15° меньше географической широты для Москвы и составляет 40-45°. Если такая энергия Вам необходима круглый год, тогда нужно использовать весь максимум в зимние месяцы. Значит необходимо ориентироваться на среднее положение Солнца между осенним и весенним равноденствием, а панели размещать ближе к вертикали, т.е. на 5-15° больше географической широты.

Если согласно архитектурным соображениям невозможно выставить панель под таким углом, значит, придется выбирать между углом наклона не больше 40° или устанавливать панель вертикально. В такой ситуации более предпочтительной является вертикальная установка панели. При такой установке не страшен недобор энергии в длинные солнечные дни, поскольку в этот период Солнца достаточно много, а необходимость производительности энергии обычно не очень велика, как в холодное время года. Конечно же угол наклона панели необходимо ориентировать на юг, но даже небольшое отклонение в 10-15° на восток или запад практически ничего не изменит, поэтому небольшое отклонение допустимо.

Размещение солнечных панелей горизонтально совсем себя не оправдало и не является эффективным. Кроме сильного снижения выработки энергии в осеннее-зимний период, на горизонтальных панелях постоянно скапливается пыль, снег, вода. А согласно инструкции по уходу за панелями, все это нужно убирать только вручную. Если панель выставить под углом больше 60°, то снег практически не задерживается на ней и панель очищается сама, а пыль отлично смывает дождь.

И еще один интересный факт – если стекло поверхности является рельефным, а не гладким, то оно сможет более эффективно улавливать боковой свет, а также передавать его на рабочие элементы солнечной панели. Самым эффективным является волнообразный рельеф, с выступами и впадинами с севера на юг, а для вертикальных панелей – сверху вниз. Рифленое стекло увеличивает выработку неподвижной панели на 5-10%.

Солнечные батареи: характеристики и особенности использования

  1. Устройство панелей
    • Технические характеристики
    • Принцип действия
  2. Плюсы и минусы
  3. Виды
  4. Эффективность работы зимой
  5. Как выбрать?
  6. Сфера применения
  7. Схема подключения
  8. Изготовление в домашних условиях
  9. Популярные производители и отзывы
    • Sharp
    • IES
    • Amonix
    • Sun Power
    • Телеком-СТВ

Ежеминутно на поверхность нашей планеты попадает много солнечной энергии, без которой жизнь на Земле невозможна. Однако это еще не все, на что она способна, сегодня мы вступаем в эру альтернативных возобновляемых источников энергии, используя активность Солнца, ветра и воды. Крупнейшие солнечные электростанции уже вырабатывают около 1% всей мировой электроэнергии, поэтому будущее за новыми разработками. И этим мы обязаны науке и современным технологиям, благодаря которым это стало возможным.

Устройство панелей

Растущая в цене электроэнергия поневоле заставляет задуматься об экономии. И отличной альтернативой в данном случае считаются природные источники энергии. Оптимальным решение для частного дома является альтернативная электростанция – солнечная батарея.

Изначально может показаться, что вся система солнечной батареи слишком большая, а принцип ее работы невероятно сложен. И чтобы понять, как функционирует солнечная батарея в деле, необходимо детально рассмотреть ее конструкцию.

В действительности гелиосистема устроена довольно просто и состоит из четырех основных элементов.

  • Солнечная батарея – по форме и размерам представляет собой прямоугольную панель с определенным количеством пластинок. В основу солнечной батареи входят полупроводниковые материалы. Миниатюрные преобразователи собираются в модули, а модули – в единую систему гелиоколлектора.
  • Контроллер – выполняет функцию посредника между солнечным модулем и аккумулятором. Он необходим для отслеживания уровня заряда аккумулятора. Его роль крайне важна во всей цепи – контроллер не дает закипать или падать электрическому потенциалу, который необходим для стабильного функционирования всей системы.
  • Инвертор – преобразует постоянный ток солнечного модуля в переменный 220-230 вольт. Гибридный сетевой инвертор может использовать для своей работы как постоянный, так и переменный ток. Но стоит учитывать, что для работы инвертора тоже необходима энергия, и его расход составляет порядка 30% потерь на преобразование. И в пасмурную погоду или в темное время суток вся энергия для работы будет расходоваться из аккумулятора. То есть если аккумулятор разрядится, то инвертор перестанет работать.
  • Аккумулятор – преобразованная в электричество солнечная энергия не всегда используется в доме в полном объеме. Излишки могут накапливаться в аккумуляторе и использоваться в темное время суток и в пасмурную погоду.
Читать еще:  Правила подбора насоса для колодца

Но перед тем как приступить к выбору и установке солнечной батареи на крыше, необходимо разобраться в принципах работы устройства, а также рассчитать рабочие узлы гелиосистемы.

Технические характеристики

Основным элементом каждой солнечной батареи является фотоэлектрический преобразователь.

В массовом производстве используется три типа элементов из кремния.

  • Монокристаллические – искусственно выращенные кремниевые кристаллы нарезаются на тонкие пластины. В основу модуля входит очищенный чистый кремний. Поверхность больше похожа на пчелиные соты или небольшие ячейки, которые соединяются между собой в единую структуру. Готовые маленькие пластинки соединяются между собой сеткой из электроводов. В данном случае процесс производства более трудоемкий и энергозатратный, что отражается на конечной стоимости солнечной батареи. Но монокристаллические элементы обладают большей производительностью, а средний КПД составляет около 24%. Срок службы монокристаллических батарей больше, они прослужат в среднем около 30 лет.
  • Поликристаллические – в основе кремниевый расплав. Такие модули считаются оптимальным решением для жилого частного дачного дома. Несколько кристаллов из кремния объединяются в один фотоэлемент. Поверхность поликристаллической солнечной батареи имеет неоднородную поверхность, из-за чего хуже поглощает свет. И КПД, соответственно, ниже, находится в пределах 20%. Срок службы поликристаллической панели составляет 20-25 лет. Они имеют характерное отличие – темно-синий цвет покрытия. Такие модули дешевле аналогов, что позволяет окупить всю систему примерно за 3 года.
  • Тонкопленочные – имеют гибкую подложку, что позволяет монтировать батарею на любую поверхность с углами и изгибами. Тонкий слой полупроводников наносится методом напыления на поверхность батареи. Такие системы имеют очевидный недостаток – маленький КПД. Производительность в среднем составляет около 10%. То есть для обеспечения энергией дома потребуется в два раза больше тонкопленочных батарей, чем поликристаллических. И срок службы таких панелей меньше других аналогов – в среднем ресурс работы составляет около 20 лет.

Идеально, если солнечные батареи могут полностью обеспечить дом электроэнергией. Но довольно часто энергия Солнца используется для горячего водоснабжения или же для отопления. Но чтобы выполнить любую из этих целей, необходимо высчитать реальную мощность на квадратный метр и необходимое количество модулей. Мощность солнечного модуля зависит от количества солнечных лучей, которые попадают на поверхность батареи. Чтобы правильно сделать выбор, также следует изучить принцип действия домашней мини-электростанции.

Принцип действия

Первый прототип гелиоколлектора, который всем известен еще с прошлого века – это дачный летний душ. Он представлял собой большую емкость, которая окрашивалась в черный цвет, в течение дня вода в ней нагревалась, что позволяло каждому дачнику вечером принимать теплый душ.

Гелиоколлектор – это плоская панель, которая располагается на улице, как правило, на крыше, и способна преобразовывать 90% солнечного излучения в энергию. В дальнейшем энергия отправляется в систему и распределяется на нужды электроснабжения. Но если гелиосистема используется для отопления или горячего водоснабжения, то энергия при помощи маломощного насоса направляется в бак-аккумулятор.

В разное время суток и в разные сезоны уровень освещения меняется. Поэтому для обеспечения бесперебойной поставки энергии в дом солнечная батарея имеет целую систему. Ученые научились управлять таким микрофизическим явлением, как фотоэлектрический эффект. И хотя, на первый взгляд, принцип действия кажется технически сложным, в действительности, принцип действия и схема электрической цепи выглядят очень просто.

Основная задача всей системы заключается в том, чтобы преобразовать энергию солнца и выдать постоянный ток определенной величины.

Плюсы и минусы

Установить солнечные батареи в своем доме может каждый желающий.

К тому же они имеют множество преимуществ.

  • Энергоэффективность – в зависимости от своего вида солнечные батареи имеют разный показатель. Но в среднем КПД составляет от 14 до 30%.
  • Солнечные батареи особенно востребованы на дачных участках. И этому есть два разумных объяснения. Во-первых, дачные участки зачастую находятся вдали от централизованных источников энергоснабжения в районах с малоразвитой инфраструктурой. И во-вторых, преобразование солнечных лучей в энергию особенно актуально именно в разгар дачного сезона – летом.
  • При необходимости мини-электростанцию можно дополнять новыми солнечными батареями для увеличения мощности.
  • Экономия – для южных регионов страны использование солнечной батареи для горячего водоснабжения позволяет сэкономить до 60% энергии в среднем за год: 30% зимой и 100% летом.
  • Подобные системы актуальны не только для частного использования, например, для дома, но и для предприятий, образовательных и медицинских учреждений. В производственном цехе солнечную батарею можно использовать в качестве дополнительного источника тепла для центрального отопления зимой, а летом – для подачи технологической горячей воды.
  • Выгода – заплатить за оборудование необходимо только один раз, впоследствии система не требует никаких вложений и обслуживания.
  • Экологический источник энергии – особенно важный аспект в планетарном плане, потому что запасы энергоносителей на Земле не безграничны.
  • Надежность – в данном случае многое зависит от выбранной модели и правильности установки.

Несмотря на множество плюсов, солнечные батареи имеют один весомы недостаток: их разумнее использовать в регионах с малым числом пасмурных дней в году, а таких на территории России очень ограниченное количество.

Стоит отметить, что система окупается через несколько лет и позволяет владельцу в будущем экономить колоссальные деньги. К примеру исходя из сегодняшних тарифов на электричество и дизель, можно с уверенностью сказать, гелиосистема окупится за 3-4 года в частном загородном коттедже для семьи из 5-7 человек. А при переходе с газа – окупаемость составит до 8-10 лет.

Солнечные батареи и их особенности. Принципы выбора оборудования для частного дома

Оглавление:

  • Составные части солнечной электростанции
    • Солнечные элементы
    • Контроллер
    • Батареи
    • Инвертор
    • Проводка
  • Интересные факты

Среди нас существует множество источников бесплатной энергии, самая доступная и выгодная – солнечная. Для её добычи используются специальные элементы – солнечные панели. О том, что понадобится для устройства солнечной электростанции в частном доме, о нюансах использования солнечной энергии мы сегодня и поговорим.

Составные части солнечной электростанции

Условно можно выделить две группы систем солнечных батарей – с малыми и большими панелями. В первом случае речь идет о аккумуляторах, способных «выдавать» до 24 В. Для полноценного обеспечения дома электроэнергией потребуются панели второго типа. Рассмотрим устройство подобных систем.

Солнечные элементы

Важнейшей частью солнечной электростанции являются сами элементы. Они выполнены из специального материала, который способен преобразовывать солнечную энергию в электрическую.

Панель состоит из нескольких отдельных элементов, которые соединяются в сборки последовательно и параллельно. При параллельном соединении увеличивается выходное напряжение, при последовательном – выходной ток.

У каждой солнечной панели есть несколько основных характеристик, которые стоит учитывать при выборе.

Мощность (Вт)

Подбирается с учетом уровня оснащения электрическими приборами. Так, семья из трех человек, потребляет около 5 кВт/ч ежедневно. Значит, суммарная мощность фотоэлементов не должна быть меньше 1500 Вт. Есть еще ряд нюансов, которые надо учитывать.

Напряжение (В)

Для частного дома предпочтительней системы, которые выдают 24 В

Металлический или пластиковый. Первый тяжелее, но долговечнее.

Коннекторы или выводы. Первый вариант практичнее и надежнее, но стоит дороже.

Читать еще:  Накладки на двери

Не забывайте, что вам придется регулярно чистить элементы от грязи и пыли. Делать это гораздо удобнее, если панели находятся в надежной металлической рамке.

Солнечные панели можно купить уже готовыми, но гораздо выгодней и удобнее собрать их самому. Так вы сможете неплохо сэкономить. Сами элементы можно заказать в интернете. Соединяя их параллельно и последовательно, вы сможете добиться необходимой мощности и напряжения. Для каркаса можно использовать алюминиевые уголки и лист стекла или прозрачного пластика.

Помните, что пластик со временем может помутнеть, что уменьшит количество энергии, получаемой с панелей. Стекло в этом плане более долговечно, но оно менее прочное.

Контроллер

Контроллер распределяет заряд между потребителем и аккумулятором. Если мощность, выдаваемая солнечными батареями, больше потребляемой, то остаток идет на зарядку аккумуляторов. Если же мощность нагрузки больше, чем выделяют элементы, то в работу подключаются аккумуляторные батареи.

Контроллер так же обеспечивает правильный заряд аккумуляторов. Выбирать его стоит исходя из мощности солнечных батарей, емкости аккумуляторов и величины нагрузки. Современные контроллеры могут сообщать вам всю информацию о вашей станции через интернет.

Батареи

Аккумуляторы накапливают излишнюю мощность с солнечных батарей, что позволяет пользоваться электричеством и в ночное время суток. Кроме того, если размер потребляемой электроэнергии превышает максимально возможное производство в панелях – подключается аккумулятор.

Самый важный параметр АКБ – емкость. Минимальная необходимая емкость аккумулятора – это то количество электроэнергии, которое вы потребляете за ночь. Если в темное время суток вы потребляете 2 кВт/ч, то и аккумулятор должен отдавать не менее 2 кВт/ч.

Емкость рассчитывается следующим образом:

Необходимая емкость=потребление (Вт/ч)/напряжение АКБ (в вольтах).

Если вы потребляете 2 кВт/ч, а напряжение аккумулятора равно 12 В, то необходимая емкость равна 166 А/ч (2000/12).

Но КПД батареи не 100 %, а 70 или даже 50 %. В облачность выработка электроэнергии сильно снижается, поэтому надо рассчитывать АКБ, исходя из потребления за двое суток. Тогда, в случае пасмурной погоды, вы сможете комфортно дождаться солнечных дней.

Инвертор

Инвертор преобразует 12 В с аккумуляторной батареи в 220 В для работы приборов. Главный его параметр – мощность. Рассчитывается она из потребления электроэнергии всеми приборами в один момент времени.

Это значение надо подбирать с запасом, так как КПД данного прибора далеко не 100 %. При подключении нагрузки с суммарной мощностью большей, чем способен отдать инвертор, он просто сгорит или уйдет в защиту.

Есть один нюанс при выборе инвертора. Приборы с электродвигателем (холодильник, дрель, пылесос и т.д.) требуют для работы чистую синусоиду. Поэтому при выборе инвертора следует обращать внимание не только на мощность, но и на тип выходного напряжения.

Проводка

Провода соединяют все элементы воедино. Выбирать их стоит исходя из мощности, которая по ним протекает. Запас в этом случае необходим, так как на проводах может теряться часть выдаваемой энергии.

Если провода работают на пределе своих возможностей, то они могут греться, что приведет к пожару.

Солнечные батареи обычно устанавливаются на крышу дома, но если крыша расположена неудачно, то их можно установить и на земле, используя специальные крепления. В этом случае оборудование будет удобно очищать от грязи и пыли.

Направление установки также играет большую роль. Необходимо выяснить, в какой стороне продолжительность освещения солнечных панелей будет максимальна для вашего региона.

Интересные факты

Батареи на солнечной энергии имеют ряд особенностей, о которых многие люди не подозревают. Мы подобрали интересные факты, которые могут поменять ваше представление об этом источнике электроэнергии.

Монокристаллические панели перестают аккумулировать солнечную энергию даже при частичном затемнении. Поликристаллические элементы в таких же условиях лишь снижают выдаваемую мощность.

На качество работы влияет инсоляция — чем она ниже, тем больше вам потребуется пластин.

Количество пластин не зависит от общей площади крыши.

Установка солнечных батарей в целях экономии – долгосрочные инвестиции. Цена качественной системы может достигать десятков тысяч долларов, окупаемость настанет через несколько десятилетий.

Панели служат не более 50 лет, аккумуляторы – до 10 лет. Проблема утилизации фотоэлементов в России не решена.

Можно сэкономить на оборудовании, если воспользоваться онлайн — площадками по покупке/продаже модулей.

Особенности выбора солнечных батарей

Сегодня солнечные батареи сложно отнести к категории передовых технологий. Ведь впервые такого рода способ получения электроэнергии использовался еще более 40 лет назад. В настоящее время данные устройства активно применяются в быту и представляют собой способ получения бесплатной и экологически чистой энергии. Ведь наше Солнце уже несколько миллиардов лет посылает на планету Земля миллиарды килловат энергии. Так почему же не использовать ее во благо человечеству? Давайте разберемся со всеми достоинствами и недостатками панелей, а также узнаем где и как заказать их в Киеве и других городах Украины. Более подробно с доступными для выбора солнечными батареями Вы можете ознакомиться по ссылке — http://vinur.com.ua/products/solnechnie-batarei.

Принцип работы солнечных панелей

По сути, батарея, генерирующая электричество под воздействием солнечных лучей, представляет собой фотоэлектрический генератор постоянного тока, использующий эффект преобразования солнечной энергии в электрическую. Если говорить точнее, то в таких устройствах используются уникальное свойство полупроводников, основой которых являются кристаллы кремния. После попадания квантов света на пластину они выбивают свободные электроны с внешнего уровня орбиты атома, что приводит к возникновению тока. Но, чтобы мощности и напряжения хватало для использования такой энергии в быту, нескольких кремниевых элементов будет недостаточно, поэтому они собираются в целые панели, в которых составляющие соединяются параллельно или последовательно в зависимости от потребностей по напряжению и току.

Солнечные батареи для дома: преимущества и недостатки

Даже несмотря на то, что солнечная электростанция имеет достаточно низкий КПД, она все равно является наиболее практичным и эффективным источником электроэнергии среди всех автономных и альтернативных способов. Из-за зависимости устройств от погодных условий, батареи используются не в качестве основного сетевого источника питания, а как дополнительный (резервный).

Что касаемо мощности, то панель среднего ценового сегмента размером в один квадратный метр в ясный солнечный день может дать порядка 120 Вт. Так, если солнечная батарея имеет площадь порядка 10 м. кв., то это обеспечит вас более, чем 1 кВт энергии, что значительно уменьшит расходы на электроэнергии по тарифу, а также позволит работать компьютеру, нескольким лампочкам и телевизору.

Технические характеристики

Также, как и любое другое устройство, солнечные панели от модели к модели различаются техническими и эксплуатационными характеристиками. Если площадь устройства составляет порядка 0.2 м. кв., то в случае максимальной нагрузки можно добиться напряжения в 25 В. Ток короткого замыкания в данном случае достигнет отметки в 0.5 А, а вес составит около 2 кг.

Что касаемо КПД, то чаще всего коэффициент полезного действия для солнечной батареи находится в диапазоне от 14 до 18 %.

Основные критерии выбора

Качество элементов модуля.

Лучше всего отдавать предпочтение пластинам Grade A, так как после нескольких лет своего использования они потеряют не более 5% своей мощности.

Количество элементов.

Именно от количества составляющих зависит, какое номинальное напряжение будет выдавать солнечная электростанция. Каждый из элементов установки при максимальной нагрузке выдает порядка 0.5 В.

Эффективность фотомодуля.

Монокристалические и поликристалические типы элементов, серийно выпускаемые сегодня, отличаются КПД 12-19%. Учитывайте тот факт, что батарея мощностью 100 Вт и с КПД 19 % будет занимать меньшую площадь крыши, нежели панель с эффективностью 12 %.

Где купить солнечные батареи в Украине?

Если вы хотите обустроить в своем жилье систему автономного электроснабжения, то наиболее оптимальным и выгодным решением будет, если купить солнечные батареи на сайте компании VINUR. Почему стоит воспользоваться услугами именно этого интернет-магазина?

Во-первых, безопасность. Благодаря многолетнему опыту работы на рынке и использованию только качественной продукции ваш бизнес или жилье будет защищено от непредвиденных ситуаций.

Во-вторых, экономия. Покупая надежное оборудование у официального поставщика, который работает напрямую с производителем, вы сможете сберечь ощутимую долю собственных денежных средств.

В-третьих, удобство и оперативная доставка. Широкий ассортимент и гибкая ценовая политика позволит ускорить поиск и подобрать наиболее оптимальные солнечные панели, которые смогут удовлетворить ваши потребности.

Как выбрать солнечные батареи. Советы покупателю

Солнечная батарея — устройство, преобразующее солнечное излучение в электрическую энергию. Впервые метод работы солнечной батареи был разработан 1839 году физиком Александром Беккерелем. Практическое применение метод получил в 1873 после изобретения первого полупроводника. Технология использования энергии солнца в целях ресурсообеспечения приобретает все большую популярность по всему миру. Получаемый вид энергии является возобновляемым, финансовые затраты при эксплуатации солнечных батарей очень низкие — средства требуются только на покупку и установку оборудования. Энергия, вырабатываемая этим источником, является дешевой и доступной и благодаря этому широко используется по всему миру. И если вы решили приобщиться к обществу «зеленой энергетики», то начать надо из того, чтобы разобраться — как правильно выбрать солнечные батареи для частного дома, дачи или даже квартиры.

Читать еще:  Особенности выбора шкафа-пенала

Как устроены солнечные батареи?

Стандартная солнечная батарея состоит из алюминиевой рамы, солнечных элементов, специального стекла, подложки, токоведущих жил и распределительной коробки.

Рис. 1 Устройство солнечной батареи

Рама панели — алюминиевая конструкция, придающая жесткость изделию и образующая основу для остальных деталей батареи. Солнечные элементы — кремниевые полупроводниковые фотоэлектрические преобразователи, выращиваемые, как правило, монокристаллическим или поликристаллическим методом. Использование полупроводниковых преобразователей дает возможность прямого, одноступенчатого преобразования энергии, что позволяет использовать солнечные батареи наиболее эффективно.

В солнечной батарее используется фотовольтаический эффект, возникающий в неоднородных полупроводниковых структурах при контакте с солнечным излучением. Неоднородность полупроводникового слоя солнечной батареи достигается легированием одного полупроводникового слоя различными примесями или соединением нескольких слоев полупроводников с различной шириной запрещенной зоны — созданием гетеропереходов. Также методом получения неоднородных кремниевых полупроводников является изменение химического состава полупроводника. Эффективность использования фотопроводника характеризуется оптическими свойствами проводника, одним из которых является фотопроводимость. Потери энергии при работе солнечных батарей связаны с несколькими процессами: частичным отражением солнечных лучей от поверхности преобразователей; прохождением части лучей, через фотопреобразователи без поглощения в них; рассеянием избыточной энергии фотонов на тепловых колебаниях решетки; внутренним сопротивлением преобразователей.

Выбор параметров солнечной батареи

При выборе солнечной батареи перед покупателем встает вопрос «Как выбрать подходящую солнечную батарею?» Существует несколько видов фотоэлементов, имеющих свои преимущества и недостатки:

  1. Поликристаллические элементы, в которых полупроводник производится поликристаллическим способом, этот метод удешевляют солнечную батарею, но снижают эффективность её работы. КПД элементов составляет 17-19%.
  2. Монокристаллические. Если элементы выращиваются монокристаллическим способом, то КПД фотоэлементов составляет 20-21%. Стоимость батарей при таком способе производства кремния увеличивается, но площадь фотоэлементов для получения энергии того же количества снижается. Готовые солнечные батареи, изготовленными поликристаллическим способом имеют КПД 13-17 %, а с фотоэлементами, изготовленными монокристаллическим способом — КПД 15-18,5%,
  3. Аморфные. Самым низким КПД (4-6%) обладают солнечные батареи, в которых фотоэлементы изготавливают из аморфного кремния.
  4. Арсенид галлиевые. Для изготовления высокоэффективных преобразователей в настоящее время широко используются GaAs — Арсенид галлия, имеющий гетероструктуру и более широкую запрещенную зону, это позволяет увеличить КПД солнечных батарей до 35-40%, правда такой тип элементов имеет очень высокую цену и используется только в космической отрасли.

Рис. 2 Типы солнечных элементов

На что обратить внимание при выборе солнечных батарей?

При выборе солнечных батарей для частного дома или дачи необходимо обратить внимание не только на КПД батареи, которое в современных конструкциях на основе кремниевых элементов, ограничивается величиной 20-21%, но и на суммарную мощность купленной солнечной электростанции. Она должна обеспечить электроэнергией, достаточной для потребления электросистемой дома в любую погоду.

Зимой сильно снижается длительность светового дня, поэтому в регионах, где это наблюдается, необходимо делать запас мощности, чтобы батарей хватало на то время, когда солнце менее активно. Почему выработка зимой меньше? Не нужно думать, что из-за холода батарея будет хуже работать. Негативное действие на эффективность работы оказывают осадки в виде снега, которые необходимо удалять и меньшая продолжительность светового дня с высокой облачностью – именно это негативно влияет на выработку электроэнергии в зимнее время. Летом солнечная батарея генерирует меньшее напряжение, чем зимой. В жару температура на поверхности гелиопанели может достигать 50–55 °С, что снижает эффективность фотогальванических элементов.

Еще один важный момент при составлении плана «Как выбрать солнечные батареи для домашней электростанции» — эффективность финансовых вложений. Многие батареи при правильном выборе окупаются достаточно быстро, так как производимая при использовании энергии солнца электроэнергия является бесплатной. Выходное номинальное напряжение солнечных батарей кратно 12В и 24В, но бывают и 20В – это панели с 60 элементами. Фактическое напряжение на выходе гелиопанелей, как правило больше номинального. Так гелиопанель с выходным номинальным напряжение, равным 12В, в точке максимальной мощности выдает 17В, а при холостом ходе выдает 23В. Аналогично работают и батареи с номинальным напряжением на выходе 20 В и 24В. Двадцативольтовая батарея выдает напряжение на выходе 30В точке максимальной мощности и 39В — в режиме холостого хода, а двадцатичетырехвольтовая соответственно — 37В и 45В.

Типовые ошибки при выборе солнечных батарей для дома

Собирая себе солнечную электростанцию самостоятельно, чаще всего допускаются ошибки связанные с подбором оборудования, отметим основные из них:

  • Не правильно подобранное напряжение аккумуляторов и солнечных батарей, используемых в одной системе;
  • Использование ШИМ контроллера с 60 ячейковой солнечной панелью;
  • Не учтенный температурный коэффициент, связанный изменением напряжения, при изменении температуры;
  • Использование разных аккумуляторов, при последовательном подключении;
  • Неверно подобранное сечение перемычек между инвертором и АКБ;
  • Пренебрежение защитными устройствами.

После подбора оборудования ошибки дилетантов не заканчиваются, поскольку впереди монтаж. При установке солнечной электростанции своими руками ошибки чаще допускаются такие:

  • Неправильная пространственная установка самих солнечных батарей;
  • Падение тени на ячейки от деревьев и соседних построек;
  • Неверное подключение оборудования. Если в системе даже всего два АКБ, последовательное соединение могут перепутать с параллельным. Не говоря уже о нескольких АКБ, когда требуется сделать последовательно – параллельное соединение. Это касается и подключения солнечных батарей;
  • Плохой контакт в электрических соединениях. Касаемо изготовления перемычек кустарным способом, без применения специального инструмента. Применение скрутки, пайки коннекторов MC4 и другие ненадежные соединения.

Это только самые распространенные ошибки, но на практике их гораздо больше. Если вы решили собирать солнечную электростанцию самостоятельно, проконсультируетесь со специалистами, это поможет избежать ошибки, сэкономить деньги и да, консультацию у нас можно получить бесплатно.

Мнения экспертов о продукции

Выбор типа солнечной станции зависит от задачи, которую необходимо решить с помощью альтернативных источников энергии.

В настоящее время наиболее широко применяются три типа солнечных электростанций:

  1. Автономные. В местах, где нет подключения к центральной сети, в садах, на дачах, автономные солнечные электростанции самые востребованные, хорошо подходят для освещения и других жизненно важных электроприборов. Применение автономных солнечных станций позволяет существенно экономить финансы, на жидкое топливо для генераторов, особенно в районах с большим количеством солнечных дней.
  2. Комбинированные с сетью. Если есть центральная сеть, то не нужно отказываться от нее, лучше сделать систему совместную с сетью. Автоматическая работа инвертора, входящего в состав такой станции, будет самостоятельно выбирать источник питания электрических приборов. А входящие в состав аккумуляторные батареи будут источником резервного электроснабжения, при отключениях сети.
  3. Сетевые on-grid. Сетевые солнечные электростанции самые выгодные и быстро окупаемые, поскольку не имеют в составе аккумуляторных батарей и преобразование энергии происходит с высоким КПД. Более того, позволяют передавать (продавать) излишки генерируемой электроэнергии в сеть, тем самым ускоряя процесс окупаемости. Во многих странах при такой генерации с помощью возобновляемых источников для продажи электроэнергии действует «зеленый тариф». В РФ в 2019 году принят в первом чтении Федеральный закон №581324-7 «О внесении изменений в ФЗ «Об электроэнергетике» в части развития микрогенерации», который позволит реализовывать электрическую энергию, вырабатываемую альтернативными источниками, по специальному тарифу. Покупка гарантирующим поставщиком электроэнергии от объектов микрогенерации будет обязательной. Цена купли-продажи будет равна средневзвешенной нерегулируемой цене на электроэнергию на ОРЭМ. Доходы физических лиц, возникшие при реализации лишней электроэнергии, произведенной для нужд своего домохозяйства, не будут подлежать налогообложению.

Независимо от выбранного типа солнечной электростанции, стоит понимать, что для надежной и эффективной работы лучше приобретать высококачественные солнечные батареи. Несмотря на более высокую стоимость они более эффективны и долговечны. Срок службы батарей может достигать 30 и более лет. Покупатели часто задают вопрос: «Почему выработка зимой меньше?» Не нужно думать, что из-за холода батарея будет хуже работать. Негативное действие на эффективность работы оказывают осадки в виде снега, которые необходимо удалять, плюс меньшая продолжительность светового дня с высокой облачностью – именно это негативно влияет на выработку электроэнергии в зимнее время. Летом солнечная батарея генерирует меньшее напряжение, чем зимой. В жару температура на поверхности гелиопанели может достигать 50–55 °С, что снижает эффективность фотогальванических элементов.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector